
Advanced Machine Learning
Practical 1 Solution: Manifold Learning

(PCA and Kernel PCA)

Professor: Aude Billard
Assistants: Bernardo Fichera, Mikhail Koptev, Arnaud Guibbert

E-mails: aude.billard@epfl.ch,
bernardo.fichera@epfl.ch, mikhail.koptev@epfl.ch, arnaud.guibbert@epfl.ch

Spring Semester 2022

1 Introduction

During this week’s practical we will focus on understanding kernel Principal Component
Analysis (Kernel PCA) by (i) comparing it to Principal Component Analysis (PCA),
(ii) analyzing the role of the chosen kernel and hyper-parameters and (iii) applying it to
high-dimensional overlapping real-world datasets.

2 ML toolbox

ML toolbox contains a set of methods and examples for easily learning and testing ma-
chine learning methods on your data in MATLAB. It is available in the following link:

https://github.com/epfl-lasa/ML_toolbox

From the course Moodle webpage (or the website), the student should download and
extract the .zip file named TP1(PCA,kPCA).zip which contains the following files:

Code Datasets

TP1 kPCA 2D.m breast-cancer-wisconsin.csv

TP1 kPCA HighD.m ionosphere.csv

setup TP1.m hayes-roth.csv

Before proceeding make sure that ./ML toolbox is at the same directory level as the TP
directory ./TP1-PCA+kPCA. You must also place setup TP1.m at the same level. Now, to
add these directories to your search path, type the following in the MATLAB command
window:

1 >> setup TP1

1

https://github.com/epfl-lasa/ML_toolbox

NOTE: To test that all is working properly with ML Toolbox you can try out some
examples of the toolbox; look in the examples sub-directory.

3 Manifold Learning Techniques

Manifold Learning is a form of non-linear dimensionality reduction widely-used in ma-
chine learning applications to project data onto a nonlinear representation of smaller
dimensions. Such techniques are commonly used as:

• Pre-processing step for clustering or classification algorithms to reduce the dimensionality
and computational costs and improve performance.

• Feature extraction.

In dimensionality reduction problems, given a training dataset X ∈ RN×M composed of
M datapoints with N -dimensions, we would like to find a lower-dimensional embedding
Y ∈ Rp×M , through a mapping function f(x) : x ∈ RN → y ∈ Rp where p < N . This
mapping function can be linear or non-linear, in this practical we will cover an instance
of a linear approach (i.e. PCA) and its non-linear variant (i.e. Kernel PCA).

3.1 Principal Component Analysis (PCA)

In Principal Component Analysis (PCA) the mapping function f(x) : RN → Rp≤N is
given by the following linear projection

y = f(x) = Ax. (1)

where A ∈ Rp×N is the projection matrix, found by diagonalizing an estimate of the
Covariance matrix C of the centered dataset

∑M
i=1 xi = 0:

C =
1

M

M∑
i=1

(xi)(xi)T , (2)

By extracting its eigenvalue decomposition C = VΛVT , the projection matrix A is
constructed as A = VT where V = [v1, . . . ,vN]. To reduce dimensionality, one then
chooses a sub-set of p eigenvectors vi from V. p can be determined by visualizing the
projections or analyzing the Eigenvalues. The chosen Eigenvectors, i.e. the Principal
Components, represent a new basis which maximize the variance along which the data is
most spread.

For a thorough description of PCA, its application and derivation, refer to the
PCA slides from the Applied Machine Learning Course.

2

http://lasa.epfl.ch/teaching/lectures/ML_Msc/Slides/PCA.pdf
http://lasa.epfl.ch/teaching/lectures/ML_Msc/

3.2 Kernel Principal Component Analysis (Kernel PCA)

PCA assumes a linear transformation in the data and, as such, it can only work well if the
data is linearly separable or linearly correlated. When dealing with non-linear inseparable
data one requires a non-linear technique. To this end, [1] proposed a non-linear technique
which exploits kernel methods to find a non-linear transformation that lifts that data to
a high-dimensional feature space φ(x) : RN → RF , where the linear operations of PCA
can be performed. Kernel PCA begins with the Covariance matrix of the data-points
projected to feature space and centered; i.e.

∑M
i=1 φ(xi) = 0:

C =
1

M

M∑
i=1

φ(xi)φ(xi)T , (3)

As in PCA, one must then find eigenvalues λk ≥ 0 and Eigenvectors v ∈ RF , that satisfy
λkvk = Cvk for all k = 1, . . . ,M . Given that vk lies in the span of φ(x1), . . . , φ(xM) the
problem becomes:

λ〈φ(xk),vk〉 = 〈φ(xk), Cvk〉 ∀ k = 1, . . . ,M. (4)

This implies that vk =
∑M

i=1 α
k
i φ(xi). Via the kernel trick k(x,xk) = 〈φ(x), φ(xk)〉 and

some substitutions (see [1]), the Eigendecomposition of (3) becomes the following dual
Eigenvalue problem:

λkMαk = Kαk (5)

where Kij = k(xi,xj) is the kernel matrix, otherwise known as the Gram matrix and α is
a column vector of M entries αk = [αk1, . . . , α

k
M]. Diagonalizing, and hence solving for the

Eigenvectors of K̃ = ṼΛṼT (after centering and normalizing K → K̃), is equivalent to
finding the coefficients α. We can then extract the desired p principal components, which,
as in PCA, will correspond to the Eigenvectors with the largest eigenvalues. However, as
opposed to PCA, extracting the principal components is not a straight-forward projec-
tions. This is due to the fact that, the Eigenvectors of K represent the data points already
projected onto the respective principal components. Hence, one must compute the pro-
jection of the image of each point φ(x) onto each k-th vk Eigenvector (for k = 1, . . . , p)
as follows:

〈vk, φ(x)〉 =
M∑
i=1

αki 〈φ(x), φ(xi)〉 =
M∑
i=1

αki k(x,xi). (6)

Thus, the p-dimensional projection of a point x is the vector y = [y1, . . . , yp] for yk ∈ R,
where each yk is computed as follows:

yk(x) = 〈vk, φ(x)〉 =
M∑
i=1

αki k(x,xi) ∀ k = 1, . . . , p (7)

Since the Eigenvectors are computed from the Gram matrix K ∈ RM×M , the number of
principal components to keep can be p ≤ M ; as opposed to PCA where p ≤ N due to
C ∈ RN×N . Until now, we have not defined k(x,xi), Kernel PCA has the flexibility of
handling many types of kernels, as long as it complies with Mercer’s Theorem [2].

3

Kernels We have three options implemented in ML toolbox:

• Homogeneous Polynomial: k(x,xi) = (〈x,x〉)d,
where d < 0 and corresponds to the polynomial degree.

• Inhomogeneous Polynomial: k(x,xi) = (〈x,x + c〉)d,
where d < 0 and corresponds to the polynomial degree and c ≥ 0, generally c = 1.

• Radial Basis Function (Gaussian): k(x,xi) = exp
{
− 1

2σ2 ||x− xi||2
}

,
where σ is the width or scale of the Gaussian kernel centered at xi

4 Kernel PCA Analysis

4.1 Projecting Datasets with PCA & Kernel PCA in ML Toolbox

In the MATLAB script TP1 kPCA 2D.m we provide an example of loading datasets and
applying PCA and Kernel PCA to generate lower-dimensional embeddings of the loaded
datasets. By running the first code sub-block 1(a), the 3D Random Clusters Dataset
shown in Figure 1 will be loaded to the current MATLAB workspace.

-4-2
-4

Random Cluster Dataset

-2

0

0

x
3

-4

2

2-2

x1x2

40 2 64 86

Class1
Class2
Class3

Figure 1: 3D Random Clusters Dataset.

1 1.5 2 2.5 3

Eigenvector index

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

%
 C

um
ul

at
iv

e
V

ar
ia

nc
e

E
xp

la
in

ed

Explained Variance from EigenValues

Figure 2: Explained Variance plot of 3D
Random Clusters Dataset; p = 2 for σ >
90%.

Principal Component Analysis (PCA): By running the second code sub-block
2(a), the Eigenvectors V and Eigenvalues Λ of the Covariance matrix C pertaining to
the PCA algorithm are computed. This block will also plot the explained variance shown
in Figure 2 through the ml explained variance.m function. One can also visualize
the eigenvalues with the ml plot eigenvalues.m function. In code sub-block 2(b), p
is chosen to be 3, the projected data-points y = Ax are computed and visualized in a
scatter plot as in Figure 3. The diagonal plot correspond to the projections on a single
Eigenvector vi represented by histograms, whereas the off-diagonal plots correspond to
the pair-wise combination of projections. The scatter matrix visualization (Figure 3)

4

can help us determine the necessary p to generate a linearly separable embedding. A
typical approach to determine p is to select the number of Eigenvectors that can explain
more than 90% of the variance of the data. As seen in Figure 2, this constraint yields
p = 2. However, by analyzing the scatter matrix (Figure 3), one can see that the first
Eigenvector can already describe a linearly separable distribution of the classes in the
dataset.

Projected data with linear PCA

00

1
0

0.2

0.4

0.6

0.8

1

V
3

0 2 40 2 4 6-5 0 5
0

1

2

3

0

2

4

6

Class 1
Class 2
Class 3

-5

0

5

V1

V2

V3

Figure 3: Principal Component Analysis
(PCA) of 3D Random Clusters Dataset
with p = 3.

1

5

Projected data with linear PCA

2

y 3

3

6

y1

04

y2

2
0 -5

Class1
Class2
Class3

Figure 4: Projected Data of 3D Random
Clusters Dataset PCA with p = 3.

When p ≤ 3, the projected points can be visualized in Cartesian coordinates as in Figure
4. This plot can be obtained by modifying the plotting option defined in line 104, as:

1 plot options.is eig = false;

Kernel Principal Component Analysis (Kernel PCA): In the third code block,
one can find the necessary functions to extract the kernel principal components of a
dataset. By running the third code sub-block 3(a), the kernel matrix K and its corre-
sponding Eigenvectors α and Eigenvalues Λ are computed. One must define the following
parameters: (i) the number of Eigenvectors to compute, theoretically this can be M , how-
ever this is computationally inefficient, hence, we choose a moderate value, i.e. between
10 and 20; (ii) the kernel type and (iii) kernel parameters, as follows:

1 % Compute kPCA with ML toolbox
2 options = [];
3 options.method name = 'KPCA'; % Choosing kernel-PCA method
4 options.nbDimensions = 10; % Number of Eigenvectors to keep.
5 options.kernel = 'gauss'; % Type of Kernel: {'poly', 'gauss'}
6 options.kpar = [0.75]; % Variance for the RBF Kernel
7 % For 'poly' kpar = [offset degree]
8 [kpca X, mappingkPCA] = ml projection(X',options);

Once α and Λ are computed, one can visualize the Eigenvalues to determine an appro-
priate p with the ml plot eigenvalues.m as in Figure 5. For the given dataset, a value
of p = 3 seems to be appropriate for the chosen kernel (RBF) and hyper-parameter

5

(σ = 0.75), as the Eigenvalues λi stop decreasing drastically after λ3. To estimate the
projections of X with p = 3 one must then use (7) to compute the projection on each
dimension. This is implemented in code sub-block 3(b), accompanied with the necessary
functions to visualize the projections, as in Figure 6.

1 2 3 4 5 6 7 8 9 10

Eigenvector index

1.5

2

2.5

3

3.5

4

4.5

E
ig

en
va

lu
es

Eigenvalues

Figure 5: Eigenvalues of kPCA from 3D
Random Clusters Dataset.

0.5

0

y1

Projected data with kernel PCA

-0.5

0.5

y2

-0.5

0

y 3

0

0.5

-0.5

Class1
Class2
Class3

Figure 6: Projected Data of 3D Random
Clusters Dataset kPCA with p = 3.

Dual Eigenvector Isoline Projection: Due to the special properties of kernel PCA,
for each dual eigenvector vk, we can display the isolines (i.e. level curves) through (6).
To recall, the isolines correspond to the region of the space for which the points have the
same projection on the dual eigenvector. Moreover, we can superpose the data-points in
original space on each Eigenvector projection. By running code sub-block 3(c) one can
generate such projections as the ones depicted in Figure 7. To choose the Eigenvectors
to plot, one must modify the following isoline plotting option:

1 iso plot options.eigen idx = [1:6]; % Eigenvectors to use.

As can be seen, not unlike PCA, already with the first Eigenvector, the clusters are well-
separated. Moreover, with the second Eigenvector each cluster belongs to a discriminative
peak in the isolines; i.e. automatically achieving a form of feature extraction. To better
visualize such phenomenon, instead of plotting the isolines with contours we can plot
them with 3D surface plots, as shown in Figure 8 for the first two Eigenvectors. Such
plots can be achieved by simply setting the following isoline plotting option to true:

1 iso plot options.b plot surf = true; % Plot isolines as (3d) surface

6

Eigen(1) Eig-val: 4.34

-1 0 1 2 3 4 5 6 7

x1

-4

-3

-2

-1

0

1

2

3

4

5

6

x
2

-3

-2

-1

0

1

2

Eigen(2) Eig-val: 3.09

-1 0 1 2 3 4 5 6 7

x1

-4

-3

-2

-1

0

1

2

3

4

5

6

x
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Eigen(3) Eig-val: 2.16

-1 0 1 2 3 4 5 6 7

x1

-4

-3

-2

-1

0

1

2

3

4

5

6

x
2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Eigen(4) Eig-val: 2.04

-1 0 1 2 3 4 5 6 7

x1

-4

-3

-2

-1

0

1

2

3

4

5

6

x
2

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Eigen(5) Eig-val: 1.89

-1 0 1 2 3 4 5 6 7

x1

-4

-3

-2

-1

0

1

2

3

4

5

6

x
2

-1

-0.5

0

0.5

1

Eigen(6) Eig-val: 1.88

-1 0 1 2 3 4 5 6 7

x

-4

-3

-2

-1

0

1

2

3

4

5

6

x
2

-1

-0.5

0

0.5

1

Figure 7: Isolines of the first p = 6 Eigenvectors of kPCA from the 3D Random
Clusters Dataset (showing only the first 2 dimensions of the original data).

Grid Search of Kernel Parameters: In order to achieve a “good” embedding, one
of the most important things to take into account is the kernel hyper-parameters. Given
a dataset of 2/3D dimensions, it might be simple to find an appropriate value of, let’s say
the σ for the RBF Kernel by visually estimating how the data is spread and subsequently
visualizing the dual Eigenvector isolines. This process, however, can be cumbersome and
sometimes infeasible for high-dimensional data. To alleviate this, one can do a grid search
on a range of parameters and determine the best value by analyzing the behavior of their
corresponding eigenvalues, as in Figure 9. From this grid search, one can draw many
conclusions. First of all, one can see that very large and very low values of σ have no
impact on the outcome of the Eigenvalues, hence are not optimal. The behavior that we
seek, is that of σ = [1, 4.64], where the first Eigenvalues are very high and suddenly a
drastic drop occurs, not surprisingly around λ3. As will be seen in the next practical,
this procedure is a good starting point to find the optimal clusters K, when unknown.

To run this grid search on your dataset, we have provided example code in sub-block
3(d) of the MATLAB script: TP1 kPCA 2D.m. One can modify the range of parameters
and type of kernel as follows:

1 grid options = [];
2 grid options.method name = 'KPCA';
3 grid options.nbDimensions = 10;
4 grid options.kernel = 'gauss';
5 % grid options.kpar = 0.4; % if poly this is the offset
6

7 % Set Range of Hyper-Parameters
8 kpars = [0.001,0.01, 0.05,0.1,0.2, 0.5, 1, 2];
9 [eigenvalues] = ml kernel grid search(X',grid options,kpars);

7

-4

-3

-2

-1

0

0

1

6

2

Eigen(1) Eig-val: 4.34

2

x1

4
2

x2

4
0

-26
-4

-3

-2

-1

0 6

0

4

Eigen(2) Eig-val: 3.09

2

1

x1

2

x2

4 0
-2

6
-4

Figure 8: Isolines (Surface plot) of the first p = 2 Eigenvectors of kPCA from the 3D
Random Clusters Dataset.

0 2 4 6 8 10
Indices of eigenvectors

0

5

10

15

20

25

30

35

40

E
ig

en
va

lu
es

0.01
0.0215443
0.0464159
0.1
0.215443
0.464159
1
2.15443
4.64159
10

Figure 9: Grid Search of σ for the RBF Kernel.

4.2 Analysis of Kernel Choice and Hyper-parameters

TASK 1: Try Kernel PCA on Non-Linearly Separable 2D Toy Datasets
You must try to determine with which type of kernel and with which parameters you
could generate a non-linear projection that can transform the dataset into an easily
separable embedding, where a simple clustering/classification algorithm can be applied.
The datasets in question are depicted in Figure 10 and 11. In order to address this, you
should ask yourself the following questions:

• What kind of projection can be achieved with an RBF kernel and with a polynomial
kernel?

• How should we relate the kernel width (σ) to the data available?

• What is the influence of the degree (d) of a polynomial kernel? Does it matter if
the degree is even or odd?

8

Once you have answered these questions, load the datasets by running sub-blocks 1(b)

and 1(c) of the accompanying MATLAB script: TP1 kPCA 2D.m and find a good pro-
jection where the classes are easily separable by modifying sub-blocks 3(a-c) with your
chosen kernel and parameters.

-4 -2 0 2 4
x1

-4

-3

-2

-1

0

1

2

3

x
2

Circles Dataset

Class1
Class2

Figure 10: 2D Concentric Circles Dataset.

-1 -0.5 0 0.5 1
x1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x
2

CheckerBoard Dataset

Class1
Class2

Figure 11: 2D CheckerBoard Dataset.

Once you have found good projections for these examples, try to create different
shapes to get an intuition on which type of structure can be encapsulated by each kernel.
You can draw 2D Data with the ml generate mouse data.m function from ML toolbox.
We provide an example script to load the GUI in:

ML toolbox/functions/data generation/ml draw data.m.

By running this script you can load the drawing GUI shown in Figure 12. After drawing
your data, you should click on the Store Data button, this will store a data array in
your MATLAB workspace. After running the following sub-blocks the data and labels
will be stored in two different arrays: X ∈ R2×M and y ∈ IM , which can then be used to
visualize and manipulate in MATLAB (Figure 13).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Store Data Change Label Clear

Figure 12: ML toolbox 2D Data Drawing
GUI.

0 50 100
x1

0

20

40

60

80

100

x
2

Drawn Dataset

Class1
Class2
Class3

Figure 13: Data After Storing it in MAT-
LAB workspace.

Try to create examples of data separable by both polynomial kernel and RBF kernel.

9

Solution Task 1:
For the Circles Dataset, the radial distribution of the data calls for an RBF kernel.
Looking at the distribution of the data one would guess that a width around the variance
of our data: σ = [2, 4]; i.e. inner and outer radius of the outer circle. Figure 14 and 15
show the resulting embedding from KPCA using σ = 2 and σ = 4, respectively. As can
be seen, with both parameters KPCA can transform the data into a linearly separable
dataset. A simple classifier such as a decision stump on y3 would suffice to classify this
data correctly.

-0.5

0

0.5

0.5

y 3

Projected data with kernel PCA

0

y2

0.5

y1

0-0.5 -0.5

Class1
Class2

Figure 14: Projected Circles Dataset with
KPCA, RBf Kernel σ = 2.

0.5

Projected data with kernel PCA

y1

0

-0.2

0

0.2

0.5

y 3

0.4

y2

-0.50 -0.5

Class1
Class2

Figure 15: Projected Circles Dataset with
KPCA, RBf Kernel σ = 4.

By plotting the isolines of the dual Eigenvectors as in Figure 16 and 17, we can see that
the first and second Eigenvectors do a diagonal clustering of the datasets, while the third
Eigenvector perfectly models the radial distribution of the dataset.

Eigen(1) Eig-val: 8.6

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Eigen(2) Eig-val: 8.35

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Eigen(3) Eig-val: 6.69

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Eigen(4) Eig-val: 4.88

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Eigen(5) Eig-val: 4.52

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Eigen(6) Eig-val: 2.68

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Figure 16: Isolines of first 6 Dual Eigenvec-
tors for the Circles Dataset with KPCA, RBf
Kernel σ = 2.

Eigen(1) Eig-val: 6.87

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Eigen(2) Eig-val: 6.48

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Eigen(3) Eig-val: 2.96

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Eigen(4) Eig-val: 2.25

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Eigen(5) Eig-val: 2.08

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Eigen(6) Eig-val: 0.67

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Figure 17: Isolines of first 6 Dual Eigenvec-
tors for the Circles Dataset with KPCA,
RBf Kernel σ = 4.

For the CheckerBoard Dataset, it seems that the data can be modeled by polynomials.
The symmetry indicates that the degree should be of even order. With a polynomial

10

kernel of degree d = 2, on can achieve the projection depicted in Figure 18. As in the
previous case, this projection generates a linearly separable dataset, with the decision
boundary being a diagonal along y1 and y2. Taking a closer look at the isolines (Figure
20) we can see how the first and second projections of the Eigenvectors perfectly cluster
the data on each side of the polynomial, this can be better seen of we plot the isolines
as surface plots (shown in Figure 21). To validate our reasoning for choosing an even
number polynomial degree, we show the projected dataset with a polynomial kernel of
degree d = 3 in Figure 19. As can be seen, a third degree polynomial, does not necessarily
exploit the symmetry in the original space.

-0.4

-0.2

0

0.2

y 3

0.4

0.5

Projected data with kernel PCA

y1

0

-0.5-0.5

y2

0
0.5

Class1
Class2

Figure 18: Projected Checkerboard Dataset
with KPCA, Homogeneous Polynomial Ker-
nel with d = 2.

-0.5

-1

0

y 3

0.5

Projected data with kernel PCA

y1

0
0.5

y2

0
-0.51

Class1
Class2

Figure 19: Projected Checkerboard
Dataset with KPCA, Homogeneous Poly-
nomial Kernel with d = 3.

Eigen(1) Eig-val: 6.17

-0.5 0 0.5

x
1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x
2

Eigen(2) Eig-val: 5.92

-0.5 0 0.5

x
1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x
2

Eigen(3) Eig-val: 4.15

-0.5 0 0.5

x
1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x
2

Figure 20: Isolines of first 6 Dual Eigenvectors for the Checkerboard Dataset with
KPCA, Homogeneous Polynomial Kernel with d = 2.

11

-4

-2

0.5

0

2

0.5

Eigen(1) Eig-val: 6.17

x
2

0

4

x
1

0

-0.5
-0.5

-10

-8

-6

-4

-2

0.5

0

2

0.5

Eigen(2) Eig-val: 5.92

x
2

0

4

x
1

6

0

-0.5
-0.5

0

1

2

0.5

3

4

0.5

Eigen(3) Eig-val: 4.15

x
2

5

0

x
1

6

0

-0.5
-0.5

Figure 21: Isolines (Surface Plot) of first 6 Dual Eigenvectors for the Checkerboard
Dataset with KPCA, Homogeneous Polynomial Kernel with d = 2.

For the drawing task on can draw datasets such as the ones in Figure 22 and 23.

-50 0 50
x1

-50

0

50

x
2

Drawn Dataset

Class1
Class2

Figure 22: Example of Two Circles.

-50 0 50
x1

-50

0

50

x
2

Drawn Dataset

Class1
Class2

Figure 23: Example of Loops.

If we try the RBF Kernel on the two Circles dataset (Figure 22) with σ = 50 we can
see how the original data can be transformed to different shapes (Figure 24). Notably,
the Eigenvector combinations v2× v3 or v3× v4 we cluster seem to project each class to
a common reference frame. Taking a close look at the isolines of the third Eigenvector,
one can see that concentric circles lie on the same level, which in combination with the
second or fourth Eigenvector result in a dataset similar to the concentric circles dataset
in the previous example. Such transformation seems to be exploiting the symmetry of
the dataset. When symmetries are involved, the simple polynomial kernel can achieve
similar or (even better) transformations as the RBF kernel and with less computational
burden. In Figure 26 we show the result of applying a second order polynomial kernel on
the same dataset. As can be seen, the Eigenvector combination v1×v2 achieve a similar
transformation as the RBF Kernel, with less computational effort.
For the loops dataset (Figure 23) we can try an RBF Kernel with σ = 20. As seen in

12

Projected data with kernel PCA

-0.2 0 0.2-0.2 0 0.2-0.2 0 0.2-0.5 0 0.5
-0.2

0

-0.2

0

0.2

-0.2

0

0.2

1
2

-0.5

0

0.5

Figure 24: KPCA (RBF) projections for 2
Circles Dataset with σ = 50.

Eigen(1) Eig-val: 117.02

-40 -20 0 20
x

1

-30

-20

-10

0

10

20

30

x
2

Eigen(2) Eig-val: 11.58

-40 -20 0 20
x

1

-30

-20

-10

0

10

20

30

x
2

Eigen(3) Eig-val: 7.61

-40 -20 0 20
x

1

-30

-20

-10

0

10

20

30

x
2

Eigen(4) Eig-val: 4.38

-40 -20 0 20
x

1

-30

-20

-10

0

10

20

30

x
2

Figure 25: KPCA (RBF) Eigenvector Iso-
lines for 2 Circles Dataset with σ = 50

Projected data with kernel PCA

-10 -5 0 5

#10 -5

0 20000

-10

-5

0

-100
0

100
200

0

1
2

-1000

0

1000

Figure 26: KPCA (Poly) projections for 2
Circles Dataset with d = 2.

Eigen(1) Eig-val: 80363.39

20 30 40 50 60 70 80

x
1

30

35

40

45

50

55

60

65

70

75

80

x
2

Eigen(2) Eig-val: 20144.83

20 30 40 50 60 70 80

x
1

30

35

40

45

50

55

60

65

70

75

80

x
2

Eigen(3) Eig-val: 3136.23

20 30 40 50 60 70 80

x
1

30

35

40

45

50

55

60

65

70

75

80

x
2

Eigen(4) Eig-val: 74.4

20 30 40 50 60 70 80

x
1

30

35

40

45

50

55

60

65

70

75

80

x
2

Figure 27: KPCA (Poly) Eigenvector Iso-
lines for 2 Circles Dataset with d = 2

28 it’s clear that we can achieve a subspace where the classes are well separated; e.g.
with Eigenvector combination v1 × v3,v1 × v3,v1 × v8. By taking a closer look into the
isolines of those Eigenvectors we can see how this separation is achieved.

13

Projected data with kernel PCA

00000000
-0.3
-0.2
-0.1

0
0.1

-0.2
0

0.2
-0.2

0
0.2

-0.4
-0.2

0
0.2

-0.4
-0.2

0
0.2
0.4

-0.4
-0.2

0
0.2
0.4

-0.5

0

0.5

1
2

-0.5
0

0.5

Figure 28: KPCA (RBF) projections for
Loops Dataset with σ = 20.

Eigen(1) Eig-val: 60.27

-20 0 20

x
1

-30

-20

-10

0

10

20

30

x
2

Eigen(2) Eig-val: 43.89

-20 0 20

x
1

-30

-20

-10

0

10

20

30

x
2

Eigen(3) Eig-val: 29.73

-20 0 20

x

-30

-20

-10

0

10

20

30

x
2

Eigen(8) Eig-val: 2.62

-20 0 20

x

-30

-20

-10

0

10

20

30

x
2

Figure 29: KPCA (RBF) Eigenvector Iso-
lines for Loops Dataset with σ = 20.

4.3 Performance of PCA/KPCA on High-Dimensional Datasets

TASK 2: Compare PCA and Kernel PCA on High-Dimensional Data
You will now compare Kernel PCA and PCA on high-dimensional datasets. You will
choose the hyper-parameters carefully and study whether you can achieve a good pro-
jection with each method. A good projection’s definition then depends on the application:

In the case of kPCA as a pre-processing step for classification or clustering, a good
projection is when the clustering/classification algorithms perform well. As we have not
seen any classification or clustering method in class yet, the quality of the projection
can be estimated visually with the visualizations tools provided by ML toolbox, e.g.
visualizing the projections on the Eigenvectors (PCA), the iso-lines of the Eigenvectors
(kernel PCA) or for instance by estimating the separation between the labeled classes
after projection.

1. Breast Cancer Wisconsin: This dataset is used to predict “benign” or “ma-
lignant” tumors. The dataset is composed of M = 698 datapoints of N = 9
dimensions, each corresponding to cell nucleus features in the range of [1, 10]. The
datapoints belong to two classes y ∈ {benign,malignant} (See Figure 30).

HINT: Try to find a projection in which the data has few overlapping
data-points from different classes.

This dataset was retrieved from:
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data

2. Ionosphere: This radar data was collected by a system in Goose Bay, Labrador.
This system consists of a phased array of 16 high-frequency antennas with a total
transmitted power on the order of 6.4 kilowatts. The targets were free electrons
in the ionosphere. “Good” radar returns are those showing evidence of some type

14

https://www.kaggle.com/uciml/breast-cancer-wisconsin-data

Breast-Cancer-Wisconsin (Diagnostic) Dataset

2 6 10550 555555

5

5

5

5

5

5

5

5 Benign
Malignant

5
10

Figure 30: Scatter Matrix of Breast Cancer Wisconsin Dataset
on Original Dimensions.

of structure in the ionosphere. “Bad” returns are those that do not; their signals
pass through the ionosphere. The data is very noisy and seems to have a lot of
overlapping values. The dataset is already normalized between -1 and 1.

HINT: Try to find a projection in which the data has few overlapping
data-points from different classes.

This dataset was retrieved from:

https://archive.ics.uci.edu/ml/datasets/Ionosphere

3. Hayes-Roth: This dataset is designed to test classification algorithms and has a
highly non-linear class repartition. As seen in Figure 32, the classes of this dataset
seem to be completely overlapping.

HINT: Find good kernels and projections that will ease the task of sepa-
rating all three classes.

This dataset was retrieved from:

https://archive.ics.uci.edu/ml/datasets/Hayes-Roth

15

https://archive.ics.uci.edu/ml/datasets/Ionosphere
https://archive.ics.uci.edu/ml/datasets/Hayes-Roth

Ionosphere Dataset

-1 0 1-1 0 1-1 0 1-1 0 1-1 0 1-1 0 1-1 0 1-1 0 1
-1

0

0

0

0

0

0

0

1
2

0

1

Figure 31: Scatter Matrix of Ionosphere Dataset on Original [1:4:32] Dimensions.

To load these datasets, we have provided example code in sub-block 1(a-c) of the MAT-
LAB script: TP1 kPCA HighD.m. Visualizing the scatter matrix of a high-dimensional
dataset can be computationally demanding, to this end, one can select which dimensions
to visualize in the scatter matrix as follows:

1 % Plot original data
2 plot options = [];
3 plot options.is eig = false;
4 plot options.labels = labels;
5 plot options.title = 'Ionosphere Dataset';
6

7 viz dim = [1:4:32];
8

9 if exist('h1','var') && isvalid(h1), delete(h1);end
10 h1 = ml plot data(X(viz dim,:)',plot options);

The rest of the code blocks in the TP1 kPCA HighD.m MATLAB script include the same
functions used in TP1 kPCA 2D.m to compute the PCA and Kernel PCA projections.

16

Hayes Roth Dataset

2 42 42 41 2 3

2

2

2

1
2
3

2

3

Figure 32: Scatter Matrix of Hayes Roth Dataset

HINT: To find a reasonable range for σ in the RBF Kernel one could analyze the
Euclidean pair-wise distances with the following functions: pdist.m and hist.m.

Solution Task 2:

1. Breast Cancer Wisconsin: For the Breast Cancer Wisconsin Dataset applying
PCA is sufficient to achieve a linearly seperable lower-dimensional embedding, as
can be seen in 33, the class distributions seem to have been seperated by simple
linear transformations.

By analyzing the Eigenvalues in Figure 34, from component (eigenvector) number
2/3 and up, the eigenvalues are basically constant compared to the first ones, in-
dicating that setting p to either 2 or 3 could be enough to represent the dataset
correctly. From Figure 33 one can see that when p = 2 the datapoint form the
two classes seem to be separated nicely, with some overlapping points. This can be
better visualized in Figure 35 when p = 3. In fact, if we analyze the projection on
the first eigenvector (in Figure 33) we can see this nice separation already. This
can indicate that the first eigenvector explains much of the variance of the dataset
and that it also encapsulates the correlations between most of the dimensions.

17

Projected Breast-Cancer-Wisconsin data with PCA

-4 0 4-5 0 5-5 00-5 0 50-5 0 50-20 0

-4-2
02
4

-5
0
5

0

-5
0
5

-5
0
5

-5
0
5

-5
0
5

-5
0
5

Benign
Malignant

-15-10-5
05

Figure 33: Scatter matrix of Breast Cancer
dataset projected on each eigenvector..

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

45

50
Eigenvalues

E
ig

en
va

lu
es

Eigenvector index

Figure 34: Plot of PCA Eigenvalues

−15
−10

−5
0

5

−5

0

5

−5

0

5

eig 1

Reduced Breast−Cancer−Wisconsin Dataset

eig 2

ei
g

3
Benign
Malignant

Figure 35: PCA Projected Dataset
with p=3

For the sake of completeness, we try to find the optimal embedding with Kernel PCA
as well. Let’s assume the RBF is the best kernel for this dataset. Now we need to
find the best kernel width σ, since this data is hard to visualize, one could compute
a histogram of the pair-wise Euclidean distances ||x− xi|| between all data-points
and find the minimum and maximum distances in the data. As see in Figure 36,
the pair-wise Euclidean distances in the dataset seem to follow this distribution in
the range of 0− 25. We thus, choose to do a grid search of σ = [1, 50], which yields
the Eigenvalue plots shown in Figure 37. Reasonable values are in the range of
5 < σ < 15. Not surprisingly, by projecting the dataset with any of these values,
say σ = 8.8 and σ = 15, we can almost achieve the same embedding as in PCA (see
Figure 38, 39).

2. Ionosphere: This dataset seems to be non-linearly separable, hence, applying
PCA will not achieve any good embedding, this can be seen in Figures 40 and
41. Even though this is a high-dimensional dataset, one can still visually extract
characteristics of the class distibution by looking at the scattering matrix plots
(Figure 31). For example, by looking at the first off-diagonal plot; i.e. x1 vs x2, we

18

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5
#10 4

Figure 36: Pair-wise Euclidean dis-
tances of Breast Cancer Wisconsin
Dataset

0 2 4 6 8 10
Indices of eigenvectors

0

20

40

60

80

100

120

140

160

E
ig

en
va

lu
es

1
1.54445
2.38533
3.68403
5.68981
8.78764
13.5721
20.9614
32.3739
50

Figure 37: Grid Search for σ RBF
Kernel PCA.

-0.6

-0.4

-0.2

0

0.2

-1

0.4

0.6

y 3

y2

0

Projected data with kernel PCA

y1

1 -1-0.500.5

Class1
Class2

Figure 38: RBF Kernel PCA Projected
Dataset with σ=8.8

-0.6

-0.4

-0.2

0

0.2

-1

0.4

0.6
y 3

y2

0

Projected data with kernel PCA

y1

1 -1-0.500.5

Class1
Class2

Figure 39: RBF Kernel PCA Projected
Dataset with σ=15

can see that the blue class seems to always be clustered radially and surrounded
by the red class. Therefore, an RBF kernel seems appropriate. The kernel width
should then be chosen according to the scale of each cluster and the distance to the
other cluster. The white cluster has a width of around 0.5, whereas the span of the
red cluster is about 2. A kernel width of σ = 1 can thus be chosen as an initial
guess. As can be seen in Figure 42, a good choice for p would be 3, the resulting
projection can be seen in Figure 43.

Following the same procedure as in the Breast Cancer Dataset, we can compute
the pairwise Euclidean distances. In this case, the histogram is quite revealing
(see Figure 44), we can see two separate bimodal distributions and the range of
Euclidean distances [0, 8] is much higher than the scale of the data [-1, 1]. For this
reason, we will do a grid search on the range of σ = [0.5, 10]. Figure 45 suggests
that an optimal range of σ is between [3, 10]. By projecting the dataset with the
σ = 3 can achieve a different embedding (see Figure 46, 47).

3. Hayes-Roth: This dataset is clearly non-linearly separable. Moreover, it is quite
hard to visualize in its original feature space (Figure 32), since the points take

19

0 5 10 15 20 25 30 35

Eigenvector index

0

0.5

1

1.5

2

2.5

3
E

ig
en

va
lu

es
Eigenvalues

Figure 40: PCA Eigenvalues of Ionosphere
Dataset

Projected data with linear PCA

-2 0 2-2 0 2-2 0 2-2 0 2-4 -2 0 2-2 0 2 4-4 -2 0 2

-2
0

-2
0
2

-2
0
2

-2
0
2

-2
0

-2
0
2

1
2-4

-2
0
2

Figure 41: PCA projection of Ionosphere
Dataset with p = 7.

1 2 3 4 5 6 7 8 9 10

Eigenvector index

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

E
ig

en
va

lu
es

Eigenvalues

Figure 42: Kernel (RBF) PCA Eigenvalues
of Ionosphere Dataset with σ = 1

-1

-0.5

0

y 3

Projected data with kernel PCA

0.5

0.5

y1

0

y2

0 0.4-0.5

Class1
Class2

Figure 43: Kernel (RBF) PCA Projection of
Ionosphere Dataset with σ = 1

discrete values and, thus, all points overlap on top of each other in the original
dimensions. In such situations one could solve this problem in two ways:

Solution 1: Grid Search on the Hyper-parameters and find the optimal projec-
tion. To find a feasible range, we compute the pair-wise Euclidean distances and
determine a “ball-park” estimate of the feasible range. Figure 48 shows the pair-
wise distance, which fall in the range of [0, 5], grid-search of the RBF Kernel was
performed on the range σ = [0.5, 10] (Figure 49). From these results we can see
that some feasible σ values are in the range of [1.3, 3.6]. We choose σ = 1.8 and
project the dataset on the first 5 principal components. As shown in 50, we can see
that in some combination of Eigenvector Projections (e.g. v2 × v3), the classes are
somewhat visually separable.

20

0 2 4 6 8 10
0

5000

10000

15000

Figure 44: Pair-wise Euclidean Distances of
Ionosphere Dataset.

0 2 4 6 8 10
Indices of eigenvectors

0

10

20

30

40

50

60

E
ig

en
va

lu
es

0.5
0.697475
0.972944
1.35721
1.89324
2.64098
3.68403
5.13904
7.16871
10

Figure 45: Grid Search for σ RBF Kernel
PCA.

-0.5

0

Projected data with kernel PCA

y2

-0.4

-0.2

0y 3

0.5

y1

0.2

0.5

0.4

0
-0.5

Class1
Class2

Figure 46: Kernel (RBF) PCA Eigenvalues
of Ionosphere Dataset with σ = 3 and p = 3

-0.4 -0.2 0 0.2 0.4 0.6
y1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y 2

Projected data with kernel PCA

Class1
Class2

Figure 47: Kernel (RBF) PCA Eigenvalues
of Ionosphere Dataset with σ = 3 and p = 2

21

-1 0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

Figure 48: Pair-wise Euclidean Distances of
Hayes-Roth Dataset.

0 2 4 6 8 10
Indices of eigenvectors

0

2

4

6

8

10

12

14

E
ig

en
va

lu
es

0.5
0.697475
0.972944
1.35721
1.89324
2.64098
3.68403
5.13904
7.16871
10

Figure 49: Grid Search for σ RBF Kernel
PCA.

Projected data with kernel PCA

0 0.4-0.5 0 0.50-0.5 0 0.50

-0.2
0

0.2
0.4

-0.5

0

0.5
-0.5

0

0.5
-0.5

0

1
2
3-0.5

0

0.5

Figure 50: Scatter Matrix of PCA Projected Hayes Roth Dataset with
RBF Kernel σ = 1.8

22

Solution 2: Another possibility is to use the linear PCA projections to see if
some structure becomes apparent, as shown in Figure 51. Another advantage of
PCA is that the data was initially on a 4*4 grid in the original dimensions and it
becomes much more spread out and easier to read in the projection space. Hence,
we can then apply Kernel PCA on the linearly projected space. By looking at the
linear projection of the first two Eigenvectors, there seems to be a radial structure
separating class 3 (blue) and classes 1-2 (red and green). We can quickly check
that the blue class is easily separable from the other two classes with the simplest
kernel: a degree d = 2 homogeneous kernel can separate the blue class from the
other points. By applying such projection (Figure 52), we can see that indeed we
can achieve a less discretized and more separable dataset.

Projected data with linear PCA

-4 -2 0-6 -4 -2-2 0 2-2 0 2

-3

-2

-1

-5

-4

-3

-2

0

2

1
2
3

-1
0
1
2
3

Figure 51: Scatter Matrix of PCA Projected Hayes Roth Dataset

23

Projected data with kernel PCA

-4 -2 0 2 4-10 0-10 0 10-10 0 10-20 0
-4
-2
0
2

-10
-5
0
5

-10

0

10

-10

0

10

1
2
3-20

-10
0

10

Figure 52: Scatter Matrix of Kernel PCA Projected Hayes Roth Dataset
with Polynomial Kernel d = 2

References

[1] Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Advances in
kernel methods. chapter Kernel Principal Component Analysis, pages 327–352. MIT
Press, Cambridge, MA, USA, 1999.

[2] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA,
USA, 2001.

24

	Introduction
	ML_toolbox
	Manifold Learning Techniques
	Principal Component Analysis (PCA)
	Kernel Principal Component Analysis (Kernel PCA)

	Kernel PCA Analysis
	Projecting Datasets with PCA & Kernel PCA in ML_Toolbox
	Analysis of Kernel Choice and Hyper-parameters
	Performance of PCA/KPCA on High-Dimensional Datasets

